mdbtxt1
mdbtxt2
Proceed to Safety

Extending Pascal and Narayana by Successive Difference Method    

The well-known Pascal's triangle and Narayana triangle can be generated by a variety of methods. This page shows a construction suggested to me by Michael Somos1 based on the fact that the kth "diagonals" are all polynomials (or degree k or 2k for Pascal and Narayana respectively). After constructing Pascal and Narayana triangles this way, it is clear that the method extends to higher "levels" of triangles.

The Axioms

These are the rules for constructing a triangle of "level" L, where L=1 gives Pascal's triangle and L=2 gives the Narayana triangle:

Using just these rules there is a single wyay to build a triangle for any natural number L.

Illustration

To illustrate the construction, here we create the Narayana triangle which is level L=2.

Put a 1 at the top: 1 sum: 1

1st diagonal is an order-0 progression, i.e. a constant sequence, so it is all 1's: 1 sum: 1 1 1 1 1 1

Bilateral symmetry determines the "other" 1st diagonal and gives us the next row sum: 1 sum: 1 1 1 sum: 2 1 1 1 1 1 1 1 1

2nd diagonal is an order 2 progression (quadratic progression). We only have one term, but we can add two 0's in front of that to get 0, 0, 1. The method of finite differences determines that the 2nd-order (2Nth order) difference should be 1. Using this to extend the sequence we get 0, 0, 1, 3, 6, 10, 15, ... 1 sum: 1 1 1 sum: 2 1 3 1 sum: 5 1 6 1 1 10 1 1 15 1

Apply bilateral symmetry, again: 1 sum: 1 1 1 sum: 2 1 3 1 sum: 5 1 6 6 1 sum: 14 1 10 10 1 sum: 42 1 15 15 1 sum: 132

For the 3rd diagonal we need a 4th-order progression, so we determine the 4th differences of 0, 0, 0, 1, 6 (which is 2); and the sequence is continued: 1, 6, 20, 50, 105, 196, ... then construction continues as above.


The 1st triangle in the series is Pascal's triangle. It has diagonals that are k-degree polynomials for all natural numbers k.

Pascal's triangle (L=1)

1 1
1 1 2
1 2 1 4
1 3 3 1 8
1 4 6 4 1 16
1 5 10 10 5 1 32
1 6 15 20 15 6 1 64
1 7 21 35 35 21 7 1 128
1 8 28 56 70 56 28 8 1 256
1 9 36 84 126 126 84 36 9 1 512
1 10 45 120 210 252 210 120 45 10 1 1024
1 11 55 165 330 462 462 330 165 55 11 1 2048
1 12 66 220 495 792 924 792 495 220 66 12 1 4096
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 8192
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1 16384

Diagonals:

T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012

T(n+1,1) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... A0027

T(n+2,2) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217

T(n+3,3) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292

T(n+4,4) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332

T(n+5,5) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389

T(n+6,6) = 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, ... A0579

T(n+7,7) = 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, ... A0580

T(n+8,8) = 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, ... A0581

T(n+9,9) = 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, ... A0582

Row sums: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, ... A0079 (the powers of 2)


The 2nd triangle in the series is the Narayana triangle. It has diagonals that are 2k-degree polynomials.

Narayana triangle (L=2)

1 1
1 1 2
1 3 1 5
1 6 6 1 14
1 10 20 10 1 42
1 15 50 50 15 1 132
1 21 105 175 105 21 1 429
1 28 196 490 490 196 28 1 1430
1 36 336 1176 1764 1176 336 36 1 4862
1 45 540 2520 5292 5292 2520 540 45 1 16796
1 55 825 4950 13860 19404 13860 4950 825 55 1 58786
1 66 1210 9075 32670 60984 60984 32670 9075 1210 66 1 208012
1 78 1716 15730 70785 169884 226512 169884 70785 15730 1716 78 1 742900
1 91 2366 26026 143143 429429 736164 736164 429429 143143 26026 2366 91 1 2674440
1 105 3185 41405 273273 1002001 2147145 2760615 2147145 1002001 273273 41405 3185 105 1 9694845

Diagonals:

T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012

T(n+1,1) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217

T(n+2,2) = 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, ... A2415

T(n+3,3) = 1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, ... A6542

T(n+4,4) = 1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, ... A6857

T(n+5,5) = 1, 21, 196, 1176, 5292, 19404, 60984, 169884, 429429, 1002001, 2186184, 4504864, 8836464, 16604784, 30046752, 52581816, 89311761, 147685461, 238369516, 376372920, ... A108679

T(n+6,6) = 1, 28, 336, 2520, 13860, 60984, 226512, 736164, 2147145, 5725720, 14158144, 32821152, 71954064, 150233760, 300467520, 578399976, 1075994073, 1941008916, 3405278800, 5824819000, ... A134288

T(n+7,7) = 1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040, 5226256926, 10606227291, 20796524100, 39525557500, 73018266750, ... A134289

T(n+8,8) = 1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, ... A134290

T(n+9,9) = 1, 55, 1210, 15730, 143143, 1002001, 5725720, 27810640, 118195220, 449141836, 1551580888, 4936848280, 14620666060, 40648664980, 106847919376, 267119798440, 638337753625, 1464421905375, 3237143159250, 6917263803450, ... A134291

Row sums: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ... A0108 (Catalan numbers)


The 3rd triangle in the series has diagonals that are 3k-degree polynomials.

3rd triangle (L=3)

1 1
1 1 2
1 4 1 6
1 10 10 1 22
1 20 49 20 1 91
1 35 168 168 35 1 408
1 56 462 900 462 56 1 1938
1 84 1092 3630 3630 1092 84 1 9614
1 120 2310 12012 20449 12012 2310 120 1 49335
1 165 4488 34320 91091 91091 34320 4488 165 1 260130
1 220 8151 87516 340340 529984 340340 87516 8151 220 1 1402440
1 286 14014 203775 1108536 2524704 2524704 1108536 203775 14014 286 1 7702632
1 364 23023 440440 3233230 10279152 15023376 10279152 3233230 440440 23023 364 1 42975796
1 455 36400 894608 8610602 36858822 75116880 75116880 36858822 8610602 894608 36400 455 1 243035536
1 560 55692 1723800 21246940 118982864 326058810 454457124 326058810 118982864 21246940 1723800 55692 560 1 1390594458

Diagonals:

T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012

T(n+1,1) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292

T(n+2,2) = 1, 10, 49, 168, 462, 1092, 2310, 4488, 8151, 14014, 23023, 36400, 55692, 82824, 120156, 170544, 237405, 324786, 437437, 580888, ... A51947

T(n+3,3) = 1, 20, 168, 900, 3630, 12012, 34320, 87516, 203775, 440440, 894608, 1723800, 3174444, 5620200, 9612480, 15945864, 25741485, 40551852, 62491000, 94394300, ... (not in OEIS)

T(n+4,4) = 1, 35, 462, 3630, 20449, 91091, 340340, 1108536, 3233230, 8610602, 21246940, 49128300, 107402022, 223590290, 445858864, 855761368, 1587391575, 2855526245, 4996155450, 8523805290, ... (not in OEIS)

T(n+5,5) = 1, 56, 1092, 12012, 91091, 529984, 2524704, 10279152, 36858822, 118982864, 351540280, 962914680, 2470246506, 5984089216, 13781092160, 30340630320, 64159481295, 130835020680, 258164977980, 494380706820, ...

T(n+6,6) = 1, 84, 2310, 34320, 340340, 2524704, 15023376, 75116880, 326058810, 1258472600, 4398116580, 14115694320, 42075627300, 117544609600, 310074573600, 777186915120, 1860624957555, 4273704384300, 9454228451850, 20209848674400, ...

T(n+7,7) = 1, 120, 4488, 87516, 1108536, 10279152, 75116880, 454457124, 2356939398, 10750951640, 43981165800, 163842880500, 562611245040, 1798432526880, 5395297580640, 15293928222540, 41199552631575, 105987868730640, 261476946896880, 620875422489960, ...

T(n+8,8) = 1, 165, 8151, 203775, 3233230, 36858822, 326058810, 2356939398, 14442030625, 77074837125, 365755136175, 1568554635375, 6158386814580, 22370208514500, 75838312806300, 241704042105240, 728666597523150, 2088844246233030, 5719808213369250, ...

T(n+9,9) = 1, 220, 14014, 440440, 8610602, 118982864, 1258472600, 10750951640, 77074837125, 477052676100, 2605203250650, 12768585102000, 56938067566380, 233592072067200, 889836203593920, 3171835499907360, ...

Row sums: 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, ... A0139 2(3n)!/((2n+1)! ((n+1)!)).


The 4th triangle in the series has diagonals that are 4k-degree polynomials.

4th triangle (L=4)

1 1
1 1 2
1 5 1 7
1 15 15 1 32
1 35 99 35 1 171
1 70 435 435 70 1 1012
1 126 1485 3211 1485 126 1 6435
1 210 4257 17108 17108 4257 210 1 43152
1 330 10725 72618 134096 72618 10725 330 1 301444
1 495 24453 260260 802332 802332 260260 24453 495 1 2175082
1 715 51480 817700 3922512 6527241 3922512 817700 51480 715 1 16112057
1 1001 101530 2311218 16376100 42195846 42195846 16376100 2311218 101530 1001 1 121971392
1 1365 189618 5987774 60192342 227779695 352049500 227779695 60192342 5987774 189618 1365 1 940351090
1 1820 338130 14419366 199138544 1062669069 2405081250 2405081250 1062669069 199138544 14419366 338130 1820 1 7363296360
1 2380 579462 32626230 602922782 4393021160 13970931975 20434596975 13970931975 4393021160 602922782 32626230 579462 2380 1 58434764955

Diagonals:

T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012

T(n+1,1) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332

T(n+2,2) = 1, 15, 99, 435, 1485, 4257, 10725, 24453, 51480, 101530, 189618, 338130, 579462, 959310, 1540710, 2408934, 3677355, 5494401, 8051725, 11593725, ... A34266

T(n+3,3) = 1, 35, 435, 3211, 17108, 72618, 260260, 817700, 2311218, 5987774, 14419366, 32626230, 69955340, 143112256, 280905348, 531470660, 973013275, 1729438425, 2992665585, 5053935705, ... (not in OEIS)

T(n+4,4) = 1, 70, 1485, 17108, 134096, 802332, 3922512, 16376100, 60192342, 199138544, 602922782, 1692118188, 4446999400, 11033699380, 26019626760, 58643783100, 126915215895, 264789028350, 534389931435, 1046321539320, ... (not in OEIS)

T(n+5,5) = 1, 126, 4257, 72618, 802332, 6527241, 42195846, 227779695, 1062669069, 4393021160, 16397325945, 56072151720, 177702418530, 526811604165, 1472149666980, 3902514432075, 9866381025150, 23898461299020, 55677381158190, 125185568743620, ...

T(n+6,6) = 1, 210, 10725, 260260, 3922512, 42195846, 352049500, 2405081250, 13970931975, 70926758760, 321271345395, 1319417078850, 4975909711500, 17410749424200, 57002548790880, 175859882398200, 514301939558550, 1433009239546500, 3820771261215150, 9785067659025120, ...

T(n+7,7) = 1, 330, 24453, 817700, 16376100, 227779695, 2405081250, 20434596975, 145499643900, 894293914800, 4852182247380, 23647178950200, 104955225512280, 429010372187100, 1629921221334000, 5800077948401100, ...

T(n+8,8) = 1, 495, 51480, 2311218, 60192342, 1062669069, 13970931975, 145499643900, 1253306385936, 9215354832816, 59236848763092, 339124799662740, 1754807980062060, 8306203442095944, ...

T(n+9,9) = 1, 715, 101530, 5987774, 199138544, 4393021160, 70926758760, 894293914800, 9215354832816, 80233646275024, 605290860465148, 4035186628845892, ...

Row sums: 1, 2, 7, 32, 171, 1012, 6435, 43152, 301444, 2175082, 16112057, 121971392, 940351090, 7363296360, 58434764955, ... naratest3(5) (not in OEIS)


The 5th triangle in the series has diagonals that are 5k-degree polynomials.

5th triangle (L=5)

1 1
1 1 2
1 6 1 8
1 21 21 1 44
1 56 176 56 1 290
1 126 946 946 126 1 2146
1 252 3861 8976 3861 252 1 17204
1 462 13013 59636 59636 13013 462 1 146224
1 792 38038 309264 603141 309264 38038 792 1 1299331
1 1287 99528 1333344 4543770 4543770 1333344 99528 1287 1 11955860
1 2002 238238 4976784 27477065 47759400 27477065 4976784 238238 2002 1 113147580
1 3003 529958 16536954 139929240 390907530 390907530 139929240 16536954 529958 3003 1 1095813372
1 4368 1108536 49912544 620213055 2630730960 4215576416 2630730960 620213055 49912544 1108536 4368 1 10819515344
1 6188 2200276 138922300 2450206330 15110742465 36592148032 36592148032 15110742465 2450206330 138922300 2200276 6188 1 108588451184
1 8568 4173806 360752240 8783060715 76105012620 266427183308 401881092624 266427183308 76105012620 8783060715 360752240 4173806 8568 1 1105241475140

Diagonals:

T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012

T(n+1,1) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389

T(n+2,2) = 1, 21, 176, 946, 3861, 13013, 38038, 99528, 238238, 529958, 1108536, 2200276, 4173806, 7610526, 13401916, 22881320, 37999335, 61553635, 97485960, 151261110, ... (not in OEIS)

T(n+3,3) = 1, 56, 946, 8976, 59636, 309264, 1333344, 4976784, 16536954, 49912544, 138922300, 360752240, 882119460, 2046243760, 4530501360, 9622635120, 19690230195, 38957308920, 74757900270, 139515162720, ... (not in OEIS)

T(n+4,4) = 1, 126, 3861, 59636, 603141, 4543770, 27477065, 139929240, 620213055, 2450206330, 8783060715, 28964147940, 88835825715, 255655343790, 695346729615, 1798214177760, 4444025522310, 10540981176660, 24086030016510, 53189272465560, ...

T(n+5,5) = 1, 252, 13013, 309264, 4543770, 47759400, 390907530, 2630730960, 15110742465, 76105012620, 342959163885, 1404627806400, 5293511182440, 18540873442080, 60853318162920, 188440578406080, 553736735982990, 1551684722373000, 4163983037123910, ...

T(n+6,6) = 1, 462, 38038, 1333344, 27477065, 390907530, 4215576416, 36592148032, 266427183308, 1676343486664, 9320576087064, 46592467821760, 212284800359676, 891349897080632, 3480512936547408, ...

T(n+7,7) = 1, 792, 99528, 4976784, 139929240, 2630730960, 36592148032, 401881092624, 3644482260276, 28186422600688, 190476539428032, 1145991630572880, 6230272847435208, ...

T(n+8,8) = 1, 1287, 238238, 16536954, 620213055, 15110742465, 266427183308, 3644482260276, 40575409433689, 380628511630367, 3087744281888994, ...

T(n+9,9) = 1, 2002, 529958, 49912544, 2450206330, 76105012620, 1676343486664, 28186422600688, 380628511630367, 4282614695229046, ...

Row sums: 1, 2, 8, 44, 290, 2146, 17204, 146224, 1299331, 11955860, 113147580, 1095813372, 10819515344, 108588451184, 1105241475140, ... (not in OEIS)


References

1 : Michael Somos, personal correspondence, 2022.


Robert Munafo's home pages on AWS    © 1996-2024 Robert P. Munafo.    about    contact
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Details here.

This page was written in the "embarrassingly readable" markup language RHTF, and was last updated on 2022 Sep 18. s.30