Extending Pascal and Narayana by Successive Difference Method
The well-known Pascal's triangle and Narayana triangle can be generated by a variety of methods. This page shows a construction suggested to me by Michael Somos1 based on the fact that the kth "diagonals" are all polynomials (or degree k or 2k for Pascal and Narayana respectively). After constructing Pascal and Narayana triangles this way, it is clear that the method extends to higher "levels" of triangles.
The Axioms
These are the rules for constructing a triangle of "level" L, where L=1 gives Pascal's triangle and L=2 gives the Narayana triangle:
- The topmost element T(0,0) is 1.
- The triangle has bilateral symmetry: T(n,k)=T(n,n-k) for all n>0 and k<=n.
- The numbers in the kth diagonal D(k)=T(n,n+k) are the values of some polynomial in x of degree Lk with constant coefficients, for x=k.
Using just these rules there is a single wyay to build a triangle for any natural number L.
Illustration
To illustrate the construction, here we create the Narayana triangle which is level L=2.
Put a 1 at the top: 1 sum: 1
1st diagonal is an order-0 progression, i.e. a constant sequence, so it is all 1's: 1 sum: 1 1 1 1 1 1
Bilateral symmetry determines the "other" 1st diagonal and gives us the next row sum: 1 sum: 1 1 1 sum: 2 1 1 1 1 1 1 1 1
2nd diagonal is an order 2 progression (quadratic progression). We only have one term, but we can add two 0's in front of that to get 0, 0, 1. The method of finite differences determines that the 2nd-order (2Nth order) difference should be 1. Using this to extend the sequence we get 0, 0, 1, 3, 6, 10, 15, ... 1 sum: 1 1 1 sum: 2 1 3 1 sum: 5 1 6 1 1 10 1 1 15 1
Apply bilateral symmetry, again: 1 sum: 1 1 1 sum: 2 1 3 1 sum: 5 1 6 6 1 sum: 14 1 10 10 1 sum: 42 1 15 15 1 sum: 132
For the 3rd diagonal we need a 4th-order progression, so we determine the 4th differences of 0, 0, 0, 1, 6 (which is 2); and the sequence is continued: 1, 6, 20, 50, 105, 196, ... then construction continues as above.
The 1st triangle in the series is Pascal's triangle. It has diagonals that are k-degree polynomials for all natural numbers k.
Pascal's triangle (L=1)
1 | 1 | |||||||||||||||||||||||||||||
1 | 1 | 2 | ||||||||||||||||||||||||||||
1 | 2 | 1 | 4 | |||||||||||||||||||||||||||
1 | 3 | 3 | 1 | 8 | ||||||||||||||||||||||||||
1 | 4 | 6 | 4 | 1 | 16 | |||||||||||||||||||||||||
1 | 5 | 10 | 10 | 5 | 1 | 32 | ||||||||||||||||||||||||
1 | 6 | 15 | 20 | 15 | 6 | 1 | 64 | |||||||||||||||||||||||
1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | 128 | ||||||||||||||||||||||
1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 | 256 | |||||||||||||||||||||
1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1 | 512 | ||||||||||||||||||||
1 | 10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | 1 | 1024 | |||||||||||||||||||
1 | 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | 1 | 2048 | ||||||||||||||||||
1 | 12 | 66 | 220 | 495 | 792 | 924 | 792 | 495 | 220 | 66 | 12 | 1 | 4096 | |||||||||||||||||
1 | 13 | 78 | 286 | 715 | 1287 | 1716 | 1716 | 1287 | 715 | 286 | 78 | 13 | 1 | 8192 | ||||||||||||||||
1 | 14 | 91 | 364 | 1001 | 2002 | 3003 | 3432 | 3003 | 2002 | 1001 | 364 | 91 | 14 | 1 | 16384 |
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... A0027
T(n+2,2) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217
T(n+3,3) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292
T(n+4,4) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332
T(n+5,5) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389
T(n+6,6) = 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, ... A0579
T(n+7,7) = 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, ... A0580
T(n+8,8) = 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, ... A0581
T(n+9,9) = 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, ... A0582
Row sums: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, ... A0079 (the powers of 2)
The 2nd triangle in the series is the Narayana triangle. It has diagonals that are 2k-degree polynomials.
Narayana triangle (L=2)
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217
T(n+2,2) = 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, ... A2415
T(n+3,3) = 1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, ... A6542
T(n+4,4) = 1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, ... A6857
T(n+5,5) = 1, 21, 196, 1176, 5292, 19404, 60984, 169884, 429429, 1002001, 2186184, 4504864, 8836464, 16604784, 30046752, 52581816, 89311761, 147685461, 238369516, 376372920, ... A108679
T(n+6,6) = 1, 28, 336, 2520, 13860, 60984, 226512, 736164, 2147145, 5725720, 14158144, 32821152, 71954064, 150233760, 300467520, 578399976, 1075994073, 1941008916, 3405278800, 5824819000, ... A134288
T(n+7,7) = 1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040, 5226256926, 10606227291, 20796524100, 39525557500, 73018266750, ... A134289
T(n+8,8) = 1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, ... A134290
T(n+9,9) = 1, 55, 1210, 15730, 143143, 1002001, 5725720, 27810640, 118195220, 449141836, 1551580888, 4936848280, 14620666060, 40648664980, 106847919376, 267119798440, 638337753625, 1464421905375, 3237143159250, 6917263803450, ... A134291
Row sums: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ... A0108 (Catalan numbers)
The 3rd triangle in the series has diagonals that are 3k-degree polynomials.
3rd triangle (L=3)
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292
T(n+2,2) = 1, 10, 49, 168, 462, 1092, 2310, 4488, 8151, 14014, 23023, 36400, 55692, 82824, 120156, 170544, 237405, 324786, 437437, 580888, ... A51947
T(n+3,3) = 1, 20, 168, 900, 3630, 12012, 34320, 87516, 203775, 440440, 894608, 1723800, 3174444, 5620200, 9612480, 15945864, 25741485, 40551852, 62491000, 94394300, ... (not in OEIS)
T(n+4,4) = 1, 35, 462, 3630, 20449, 91091, 340340, 1108536, 3233230, 8610602, 21246940, 49128300, 107402022, 223590290, 445858864, 855761368, 1587391575, 2855526245, 4996155450, 8523805290, ... (not in OEIS)
T(n+5,5) = 1, 56, 1092, 12012, 91091, 529984, 2524704, 10279152, 36858822, 118982864, 351540280, 962914680, 2470246506, 5984089216, 13781092160, 30340630320, 64159481295, 130835020680, 258164977980, 494380706820, ...
T(n+6,6) = 1, 84, 2310, 34320, 340340, 2524704, 15023376, 75116880, 326058810, 1258472600, 4398116580, 14115694320, 42075627300, 117544609600, 310074573600, 777186915120, 1860624957555, 4273704384300, 9454228451850, 20209848674400, ...
T(n+7,7) = 1, 120, 4488, 87516, 1108536, 10279152, 75116880, 454457124, 2356939398, 10750951640, 43981165800, 163842880500, 562611245040, 1798432526880, 5395297580640, 15293928222540, 41199552631575, 105987868730640, 261476946896880, 620875422489960, ...
T(n+8,8) = 1, 165, 8151, 203775, 3233230, 36858822, 326058810, 2356939398, 14442030625, 77074837125, 365755136175, 1568554635375, 6158386814580, 22370208514500, 75838312806300, 241704042105240, 728666597523150, 2088844246233030, 5719808213369250, ...
T(n+9,9) = 1, 220, 14014, 440440, 8610602, 118982864, 1258472600, 10750951640, 77074837125, 477052676100, 2605203250650, 12768585102000, 56938067566380, 233592072067200, 889836203593920, 3171835499907360, ...
Row sums: 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, ... A0139 2(3n)!/((2n+1)! ((n+1)!)).
The 4th triangle in the series has diagonals that are 4k-degree polynomials.
4th triangle (L=4)
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332
T(n+2,2) = 1, 15, 99, 435, 1485, 4257, 10725, 24453, 51480, 101530, 189618, 338130, 579462, 959310, 1540710, 2408934, 3677355, 5494401, 8051725, 11593725, ... A34266
T(n+3,3) = 1, 35, 435, 3211, 17108, 72618, 260260, 817700, 2311218, 5987774, 14419366, 32626230, 69955340, 143112256, 280905348, 531470660, 973013275, 1729438425, 2992665585, 5053935705, ... (not in OEIS)
T(n+4,4) = 1, 70, 1485, 17108, 134096, 802332, 3922512, 16376100, 60192342, 199138544, 602922782, 1692118188, 4446999400, 11033699380, 26019626760, 58643783100, 126915215895, 264789028350, 534389931435, 1046321539320, ... (not in OEIS)
T(n+5,5) = 1, 126, 4257, 72618, 802332, 6527241, 42195846, 227779695, 1062669069, 4393021160, 16397325945, 56072151720, 177702418530, 526811604165, 1472149666980, 3902514432075, 9866381025150, 23898461299020, 55677381158190, 125185568743620, ...
T(n+6,6) = 1, 210, 10725, 260260, 3922512, 42195846, 352049500, 2405081250, 13970931975, 70926758760, 321271345395, 1319417078850, 4975909711500, 17410749424200, 57002548790880, 175859882398200, 514301939558550, 1433009239546500, 3820771261215150, 9785067659025120, ...
T(n+7,7) = 1, 330, 24453, 817700, 16376100, 227779695, 2405081250, 20434596975, 145499643900, 894293914800, 4852182247380, 23647178950200, 104955225512280, 429010372187100, 1629921221334000, 5800077948401100, ...
T(n+8,8) = 1, 495, 51480, 2311218, 60192342, 1062669069, 13970931975, 145499643900, 1253306385936, 9215354832816, 59236848763092, 339124799662740, 1754807980062060, 8306203442095944, ...
T(n+9,9) = 1, 715, 101530, 5987774, 199138544, 4393021160, 70926758760, 894293914800, 9215354832816, 80233646275024, 605290860465148, 4035186628845892, ...
Row sums: 1, 2, 7, 32, 171, 1012, 6435, 43152, 301444, 2175082, 16112057, 121971392, 940351090, 7363296360, 58434764955, ... naratest3(5) (not in OEIS)
The 5th triangle in the series has diagonals that are 5k-degree polynomials.
5th triangle (L=5)
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389
T(n+2,2) = 1, 21, 176, 946, 3861, 13013, 38038, 99528, 238238, 529958, 1108536, 2200276, 4173806, 7610526, 13401916, 22881320, 37999335, 61553635, 97485960, 151261110, ... (not in OEIS)
T(n+3,3) = 1, 56, 946, 8976, 59636, 309264, 1333344, 4976784, 16536954, 49912544, 138922300, 360752240, 882119460, 2046243760, 4530501360, 9622635120, 19690230195, 38957308920, 74757900270, 139515162720, ... (not in OEIS)
T(n+4,4) = 1, 126, 3861, 59636, 603141, 4543770, 27477065, 139929240, 620213055, 2450206330, 8783060715, 28964147940, 88835825715, 255655343790, 695346729615, 1798214177760, 4444025522310, 10540981176660, 24086030016510, 53189272465560, ...
T(n+5,5) = 1, 252, 13013, 309264, 4543770, 47759400, 390907530, 2630730960, 15110742465, 76105012620, 342959163885, 1404627806400, 5293511182440, 18540873442080, 60853318162920, 188440578406080, 553736735982990, 1551684722373000, 4163983037123910, ...
T(n+6,6) = 1, 462, 38038, 1333344, 27477065, 390907530, 4215576416, 36592148032, 266427183308, 1676343486664, 9320576087064, 46592467821760, 212284800359676, 891349897080632, 3480512936547408, ...
T(n+7,7) = 1, 792, 99528, 4976784, 139929240, 2630730960, 36592148032, 401881092624, 3644482260276, 28186422600688, 190476539428032, 1145991630572880, 6230272847435208, ...
T(n+8,8) = 1, 1287, 238238, 16536954, 620213055, 15110742465, 266427183308, 3644482260276, 40575409433689, 380628511630367, 3087744281888994, ...
T(n+9,9) = 1, 2002, 529958, 49912544, 2450206330, 76105012620, 1676343486664, 28186422600688, 380628511630367, 4282614695229046, ...
Row sums: 1, 2, 8, 44, 290, 2146, 17204, 146224, 1299331, 11955860, 113147580, 1095813372, 10819515344, 108588451184, 1105241475140, ... (not in OEIS)
References
1 : Michael Somos, personal correspondence, 2022.
This page was written in the "embarrassingly readable" markup language RHTF, and was last updated on 2022 Sep 18. s.30